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Section 1 

INTRl DUCTION 

1.1 Background 

I n  order t o  achieve the necessary r e l i a b i l i t y  of mult icel lular  propellant 

containers f o r  appl icat ion as large boosters, it i s  essent ia l  t o  f u l l y  c l a r i f y  

and reduce t o  theory the associated juncture s t r e s s  f i e l d s  peculiar t o  such 

s h e l l  s t ructures .  

subject carr ied out by s t a f f  members of M C  under Contract NAS 8-11079, a 

l i nea r  theory has been established f o r  the prediction of s t a t i c  response of 

the s h e l l  s t ructures  under consideration*. Since an analyt ic  solution i s  

not avai lable  for t h i s  type of problem, a numerical procedure was fo rmla ted  

f o r  use with high-speed d i g i t a l  computers. The f e a s i b i l i t y  of the selected 

numerical technique was demonstrated a f t e r  a d i rec t  method of solving large 

systems of simultaneous equations was sa t i s f ac to r i ly  developed during the 

previous investigation*. 

A s  a r e su l t  of the f i r s t  phase of research studies on t h i s  

In s p i t e  of these achievements, however, two basic problems s t i l l  existed 

insofar  as the capabi l i ty  of performing the optimization of such s t ructures  

i s  concerned. The f i r s t  problem was the development of d i g i t a l  prngrems tc! 

generate s t resses  and deformations under loads and thermal gradients, and the 

second w a s  t o  develop analyses and associated d i g i t a l  programs t o  predict  

buckling loads of orthotropic cylindrical  panels under specif ic  loadings and 

appropriate boundary conditions. 

*Tsui, E .  Y .  W . ,  e t  a l . ,  “Investigation of Juncture Stress Fields in Multi- 
c e l l u l a r  She l l  Structures,  ‘ I  LMSC M-03-63-1 (NASA CR-6105@), Feb. 1964. 
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1.2 Scope of work 

In essence, the work involved i n  the present phase of the  research s tudies  

on juncture stress f i e l d s  i n  mult icel lular  she l l  s t ructures  was designed t o  

y ie ld  solutions t o  both the bending and buckling problems j u s t  mentioned. 

Specifically,  the objectives of work reported here can be s ta ted,  as follows: 

I The Bending Problem 

Develop d i g i t a l  computer programs f o r  the specif ic  ana ly t ica l  approach 

formulated under NAS 8-11079 predicting membrane and discontinuity f i e lds  a s  

w e l l  as deflections throughout a specific type of s h e l l  w i th  junctures pecul iar  

t o  mult icel lular  s t ructures .  

s t resses  and deformations of the specific s t ructures  using isotropic  bulkheads 

and orthotropic rad ia l  webs and cyl indrical  segments. 

should include : 

These programs should be capable of predicting 

The developed programs 

(1) 
( 2 )  

Detail description of the programs. 

Numerical examples of sample problems, using the ana ly t ica l  procelure 

and the method of solving large s e t s  of simultaneous equations 

developed by Lockheed, especially i n  the process of evaluating the 

influence coeff ic ients  of she l l  segments a s  well as sat isfying the 

compatibility conditions along she l l  junctures. 

a l so  include the optimization of mesh s ize  and t o t a l  computer time. 

The resu l t ing  method o f  analysis w i l l  be l imited t o  the e l a s t i c  

theory as applied t o  th in  she l l  structures,  and accounting f o r  varia- 

t ions  i n  physical properties of materials and specif ic  range of s n e l l  

geometry. Thermal s t resses  due t o  temperature gradients should a l so  

be included. 

This work should 

I1 The Buckling Problem 

Perform the necessary theore t ica l  investigations required t o  formulate theory 

and develop an ana ly t ica l  approach f o r  prediction of the buckling loads of both 
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i so t ropic  and orthotropic cyl indrical  panels w i t h  displacements sa t i s fy ing  

~ appropriate boundary conditions, and develop d i g i t a l  programs t o  generate 

design curves, preferably presented i n  a form of merit indices readi ly  adapta- 

ble t o  optimum strength/weight design. 

on the buckling analysis of cyl indrical  panels p r i o r  t o  the i n i t i a t i o n  of the 

theore t ica l  investigation. 

T h i s  work will include l i t e r a t u r e  s e x c h  

3 



Section 2 

S W H Y  OF RESULTS 

2.1 The Bending Analysis 

Results of the work carr ied out i n  the present studies which are d i r ec t ly  

re la ted  t o  the bending of the elements as w e l l  as the en t i r e  mult icel lular  

s h e l l  s t ructure  a re  described i n  Vols .  I through V I  of the f ina l  report .  

These r e su l t s  a r e  summarized br ie f ly  below. 

Volume I presents two basic numerical techniques for solving la rge  systems 

of algebraic simultaneous equations resu l t ing  from the f ini te-difference 

approximation of the p a r t i a l  d i f f3ren t ia l  equations of t h i n  e l a s t i c  she l l s .  

O f  the  methods available f o r  solving such systems of equations, the matrix 

factor izat ion and two-line successive over-relaxation methods are discussed 

i n  d e t a i l .  It i s  found tha t  t he  direct  methods generally require more com- 

puter  running t i m e  than the i t e r e t ive  methods, especial ly  when the  s ize  of 

the  matrix i s  large.  However, the  d i r ec t  methods permit rapidly varying 

mesh spacing which i s  desirable for  the  accurate determination of the boundary- 

layer  bending behavior of shel l  elements involved i n  mult icel lular  pressure 

vessels .  Besides, the  d i rec t  method as developed i s  capable of solving up t o  

s ix  thousand equations using the IBM 7094 and Fortran I1 Version I1 language. 

Volume I1 presents a s e t  of basic equations fo r  both isotropic  and orthotropic 

th in  e l a s t i c  cyl indrical  she l l s  6nd a d i g i t a l  program which provides s o h  ;ions 

for fixed-edge s t i f fened and unstiffened cyl indrical  panels under loads and 

change of temperature. The method of solution consists bas ica l ly  of obtaining 

the  deformations (u, v, w )  a t  various discrete  s ta t ions of the  s t ructure  by 

f ini te-difference approximation. The corresponding s t r e s s  resul tants ,  s t r a ins  

and s t r e s ses  may then be computed. The following options are available i n  the 

program: 
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1 . -  
1. Construction 

(a) Isotropic 

(b) Orthotropic 

2. Finite-Difference Mesh 

(a) Uniform spacing 

(b) Graded spacing in the x-direction 

( c )  Symmetry i n  the x-direction 

3. Loading Conditions 

( a )  Uniform normal pressure 

(b)  Hydro-static pressure 

(c  ) Linear temperature gradient through the s h e l l  thickness 

The program i s  designed t o  compute not only the fixed-edge forces due t o  

loads or thermal gradients,  but also the displacements, s t r e s s  resu l tan ts  and 

s t r a i n s  i n  the loaded region of the  panel. The f ini te-difference mesh network 

i s  specif ied completely by prescribing the number of rows (n)  and columns ( m )  
exclusive of the boundaries. The maximum number of rows and columns i s  24 
and 80 respectively.  

solved since there a re  three displacement components i n  each s ta t ion .  

put can be tabulated and p lo t ted  simultaneously. 

showing the deformations and s t r e s s  resu l tan ts  of an  orthotropic panel under 

uniform pressure i s  a l so  presented (see Table 4 and Fig. 13). 

Thus, the maximum of 3 x n x m = 5760 unknowns can be 

Out- 
A numerical example (Fig. 1 2 )  

Figure 1 shows 
I,. - 
b i l e  vvarittiiozls o r  tile fixed-edge foi-cEs aloiig thz ‘ t ; ~ d ~ & a r l e ~  of the SZGE p ~ ~ r ; ~ l  

under uniform pressure. 

It should be noted that the tabulated or plo t ted  output quant i t ies  a re  non- 

dimensional. 

gradients,  physical and geometrical propert ies  of the panel i n  the following 

way : 

These quant i t ies  can be re la ted  to the applied loads or t h e m 1  

5 



a. For panels under Uniform 2ressure (pz ) :  
u A = u(pz R2/Eh) 

v A = v(p, R2/Eh) 

m, = TM(PZR) 

= w(pz R2/Eh) 

A 

N = “ORM(pZR) 

6 = Q(P$ 

5 

2 ii = N P Z R  1 

b. For panels under Hydrostatic Pressure (Fo + px):  

1; = u(R2/Eh) 

= v(R2/Eh) 

w = w(R2/Eh) 
h 

A 

Nq = NTAN(R) 

N = NNORM(R) 

6 = Q ( R )  

M = M ( R ~ )  

A 

5 

A 

c. For panels under Linear Thermal Gradient through the  thickness of 
she l l  : 

< = v(R) 

4 = w ( R )  
* 
N,(, = NTAN(Eh) 

fi = “ORM(Eh) 

6 = Q(Eh) 

ii = M(E~R) 

5 

(3 )  
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Volume I11 presents a s e t  of basic  equations for the  isotropic  she l l s  with 

the w a l l  thickness e i the r  uniform o r  varying l i n e a r l y  along the generator. 

A d i g i t a l  program i s  presented f o r  the computation of the fixed-edge forces 

a s  well as displacements and s t r a i n  in the loaded region due t o  intermediate 

loads or thermal gradients.  The following program options a r e  avai lable:  

1. Finite-difference mesh 

(a )  Uniform spacing 

(b)  Graded spacing along the  generator 

2. Loading Conditions 

( a )  Uniform normal pressure 

(b)  Gravitational loading 

( c  ) Linear temperature gradient through the thickness of she l l .  

There a r e  no r e s t r i c t ions  on the geometrical dimensions of panels. However, the 

accuracy with which the basic d i f f e ren t i a l  equations a re  approximated may vary 

for d i f f e ren t  configurations of the conical she l l .  

a fixed-edge uniform thickness conical panel under uniform pressure i s  a l so  

included i n  t h i s  volume. 

i n  Table 5 and Fig. 10 respectively can be re la ted  t o  the applied loads and the 

propert ies  of the conical panel, as follows: 

A numerical solut ion showing 

The nondimensional quant i t ies  tabulated and p lo t ted  



b. For panels under Gravitational Load: 

I? = u[hop  ̂ %(l - u2) /E]  

? = -:[hoi %(1 - v2) /E]  

$ = v[hoi %(l - u2)/E] 

i3 11 
5 
6 = Q(hoih3/12$) 

fi = M(hop^h3/12%) 

^p = material density 

= NTAN ChhOp^(l - u ) / 2 ]  

fi = NNORM(hhop”) 

where 

( 5 )  

c.  For panels under Linear Thermal Gradient across the thickness of 
she l l  

where 

16 



Volume IV of t h i s  f i n a l  report  presents a s e t  of basic  equations for an 

isotropic  spherical  she l l  and a d i g i t a l  program which provides solutions f o r  

spherical  panels under loads and changes of temperature. 

designed to  compute the fixed-edge forces. However, displacements, strains 
The program i s  

and s t r e s s  resul tants  i n  the loaded region are  a l so  generated simultaneously. 

The following program options are available:  

1. Finite-difference mesh 

(a)  Uniform spacing 

(b )  

( c )  Symmetry i n  the cp-direction 

Graded spacing i n  the y-direction 

2. Loading conditions 

(a )  Uniform normal pressure 

(b )  Linear temperature dis t r ibut ion across the thickness of she l l .  

Since the boundaries a re  not along the coordinate l i n e s  for  the panel under 

consideration, the appropriate boundary conditions can not be sa t i s f i ed  exactly 

by the established f ini te-difference scheme. I n  order t o  approximate the 

boundary conditions as closely as possible, two methods f o r  or ient ing one of 

the coordinates were devised f o r  the subdivided segments of the spherical  panel. 

A numerical example, using the f i r s t  o r ien ta t ion  of coordinate "$' fo r  the 
spiiei-ical si.ibsement v h ~ c h  adj0j-z~ the  COXI~CZI, p E e l  (r?nier 1-1.nifo-rm pressure 1 
i s  a l s o  given (see Table 5 and Figs. 6 and 11). 

quant i t ies  a re  re la ted  t o  the applied loads and the physical properties of the 

panel i n  the following way: 

The nondimensional output 

a. For panels under Uniform Pressure (p,) : 

6 = ~(P,R~/EG) 

.G = v ( p , ~ ~ / ~ f i )  

4 = w ( p Z ~ * / ~ f i )  

6 = NTAN [pzR/2(1 + u ) ]  ?1 



b. For panels under Linear Thermal Gradient across the thickness 
A 

u = u(R) 

$ = v(R) 

where 

6 = w ( R )  
h N = NTAN [Efi/2(1 + v)] 

fi = NNORM [EG/(l - u 2 ) ]  
1 
5 
6 = Q(D/R2) 

A = M(D/R) 

It i s  noted tha t  Volumes 11, I11 and I V  as a whole provide the necessary 

information f o r  the f i rs t  s tep  toward the  solut ion of the bending problem. 

Volume V introduces a technique f o r  determining s t i f f n e s s  influence coeff i -  

c i e n t s  of cyl indrical ,  conical and spherical  panels, using the modified d i g i t a l  

programs developed f o r  fixed-edge she l l s  under applied loads. Numerical values 

of influence coeff ic ients  f o r  sample cylindricaL conical and spherical  panels 

are a l s o  l i s t e d .  This volume describes the necessary numerical procedure f o r  

the second s tep  toward the solution of the bending problem. 

18 



0 Volume V I  presents a detai led description of the t h i r d  or  f inal  s tep toward 

the solution of the bending problem. It provides a technique t o  s e t  up and 

solve the per t inent  boundary-value problem of a s t ructure  composed of s h e l l  

elements. The technique, known as the d i r ec t  matrix s t i f fnes s  or  displace- 

ment method, is  applied t o  the mult icel lular  she l l  s t ructure  t o  predict  the 

s t resses  and deformations due t o  loads and thermal gradients. The problem 

i s  formulated from the standpoint of transformations of coordinate systems, 

the compatibility and equilibrium requirements a t  the junctures, and the 

solution of a la rge  s e t  of algebraic equations. 

of equations plays an important role i n  forming a desirable overa l l  banded 

matrix. 

equations simultaneously, the method of relaxing the f ixed boundaries of s h e l l  

elements successively i s  a l so  introduced. The p rac t i cab i l i t y  of the tech- 

nique i s  demonstrated by numerical examples which show how di f fe ren t  s h e l l  

elements a r e  matched along t h e i r  common juncture l i nes .  Solutions of these 

examples are generated by a d ig i t s1  program designed and developed f o r  thLs 

pa r t i cu la r  purpose. 

It i s  shown that the orde:-ing 

I n  addition t o  the consideration of solving the overal l  matrix 

2.2 The Buckling Analysis 

Results of the studies concerning the buckling problem a re  described i n  

Volumes V I 1  and V I 1 1  of the f i n a l  report. These r e su l t s  a r e  summarized below: 

Volume V I 1  presents a theore t ica l  solution for the buckling of orthotropic 

cy l indr ica l  panels with simply supported curved edges and e l a s t i c a l l y  supported 

s t r a i g h t  edges, and describes a d i g i t a l  computer program f o r  the prediction of 

c r i t i c a l  buckling loads under uniform compression applied i n  the ax ia l  direc- 

t i o n  only. 

appl icat ions.  These curves a re  based on the assumption t h a t  the s t r a igh t  edges 

a r e  simply supported. Also, general expressions f o r  the influence coeff ic ients  

of rectangular orthotropic web plates  a re  presented, and an investigation of the 

e f f e c t s  of f l e x i b i l i t y  of the web plate  on the buckling of the  panel i s  described. 

I 

A s e t  of nondimensional buckling curves a re  provided f o r  p rac t i ca l  

I 
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Volume VI11 presents a numerical analysis of the buckling of orthotropic 

cyl indrical  panels under both ax ia l  compression and shear loads applied a t  the 

generators. A s  a consequence of the introduction of shear loads, the s t r e s s  

d i s t r ibu t ion  i n  the panel i s  no longer uniform and the inherent eigenvalue 

problem can be solved only througk numerical analysis .  A two-dimensional 

f ini te-difference scheme was used to  solve the per t inent  buckling equations. 

It i s  believed t h a t  t h i s  was the Llirst attempt t o  solve the prescribed 

problem numerically. 

mately the lower bound f o r  buckling of cy l indr ica l  panels with the e f f ec t  of 

web p la t e s  neglected. 

The objective of t h i s  work w a s  t o  determine approxi- 
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Section 3 
DISCUSSIONS AND RECOMMENIIATIONS 

3.1 Discussions 

The scope of the present phase of studies on juncture stress f i e l d s  involves 

three main topics,  namely, (1) numerical methods f o r  solving large matrices, 

(2)  the bending analysis,  and (3)  the buckling analysis.  

these topics  w i l l  be discussed i n  the same sequence. 

In w h a t  follows 

Both d i r ec t  Gaussian elimination and two-line i t e r a t i v e  methods have been 

explored and successfully u t i l i z e d  t o  solve the re la ted  boundary-value problem. 

It was found t h a t  the l a t t e r  method requires l e s s  computer t i m e ,  especial ly  

when the  s ize  of matrix i s  large.  However, Gaussian elimination has been u5ed 

i n  most of the programs developed for  the present work mainly because it was 

the f irst  method developed. 

b l e  t o  replace the d i rec t  method used i n  some of these programs by the i t e r a -  

t ive technique especial ly  i f  extensive parametric s tudies  are t o  be made t o  

generate design curves needed f o r  pract ical  applications.  The two-dimensional 

f ini te-difference numerical procedure has been employed i n  an  attempt t o  solve 

J-7- ULC - 

This technique seems qui te  promising but fur ther  work on programming i s  needed 

for  obtaining meaningful solutions.  

From the economics standpoint it would be desira- 

L-- u u c u i f i g  ----I - ._ - of cj;liiidrlcal panels ~ . = d ~ r  E G E - E ~ ~ ~ S ~ Z  s t r e s s  d i s t r i b ~ t i ~ ~ ~  

One of the remarkable achievements i n  the present phase of s tudies  concerning 

the  bending problem i s  the nondimensionalization of the basic equations f o r  she l l  

elements and the d i g i t a l  programs developed f o r  the fixed-edge panels (see 

Volumes 11, I11 and I V ) .  If care i s  properly taken, these programs can be used 

i n  preliminary design fo r  the approximate evaluation of the peak s t resses  a t  

the i n t e r i o r  a s  well as along the web p la tes  of the panels of which the bulk- 

heads are composed. However, as far as accurate s t r e s s  d i s t r ibu t ion  i s  concerned, 
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0 the bending problem of the e n t i r e  s t ructure  should be solved by the technique 

described i n  Volume V I ,  presumably using a package d i g i t a l  program. Unfortu- 
nately, the program f o r  solving the overal l  matrix has not been f u l l y  developed, 

and addi t ional  programming work i s  needed f o r  the complete mastery of the bt:nd- 

ing analysis  of mult icel lular  shell s t ructures .  In addition, it i s  conceivable 

t h a t  within the  ac tua l  s t ruc ture  under consideration irregularities such as 
openings, manholes, e t c .  may ex i s t .  The determination of local ized s t resses  

within the neighborhood of these anisotropic o r  variable thickness junctures 

requires  special  techniques. 
‘I. 

f o r  the  analysis of variable thickness axisymmetrical shells, a r e  available i n  

LMSC . 

Some o f  these techniques such a s  digita,l programs 

The accomplishment on the buckling of orthotropic cy l indr ica l  panels under 

uniform s t r e s s  d i s t r ibu t ion  as reported i n  Volume V I 1  i s  by no means a complete 

so lu t ion  to  the problem. However, with the  avai lable  non-dimensional design 

curves and the accompanying d i g i t a l  program, approximate buckling loads of the 

cy l indr ica l  panels within the mult icel lular  s h e l l  s t ruc ture  88  well a s  in t e r -  

s tages  can be predicted qui te  readily.  From Figs. 5 through 16, one f inds 

t h a t  within the range of R / t  considered the buckling coeff ic ients  a r e  s l i gh t ly  

higher f o r  an orthotropic panel when the s t i f f ene r s  a r e  placed outside of the  

skin r a the r  than inside of the she l l .  

coef f ic ien t  “K” i s  given by the c l a s s i ca l  value of 1/[3(1 - I J ~ ) ] ’ ’ ~  i f  0 > 0.2 . 
It i s  believed that the  coeff ic ients  as presented i n  Figs. 5 t o  16 a re  cons%rva- 

t i v e  and my well be used a s  a guide i n  preliminary desi@ or  i n  obtaining more 

accurate r e su l t s  using associated d i g i t a l  programs. Since the pr inciple  of 
minimization of energy has been employed, th buckling analysis of cyl indrical  

panels under non-uniform stress d is t r ibu t ion  as formulated i n  Volume V I 1 1  i s  

unique. However, d i f f i c u l t i e s  have been encountered i n  developing the asso- 

For monocoque panels ( p = l), the buckling 

! 
c ia t ed  d i g i t a l  program which involves a two-dimensional f ini te-difference 

approximate of the buckling equations. 

the programming i s  desirable.  

A s  mentioned e a r l i e r ,  fur ther  work on 
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3 . 2  Recommendations f o r  Further Studies 

Based on the  experience and the results obtained in the present s tudies  

(M-77-65-1 t o  9 )  and those from the previous studies [M-03-63-1 (NASA 

CR-61050)] as w e l l  as the f a c t  that a 200-in. model has been tes ted  recent ly  

by NASA/MSFC with no attempt made t o  cor re la te  the t e s t  results with those 

obtained from analyt ic  solutions,  it is  recommended that the following addi- 

t i o n a l  s tudies  be made: 

1. Improvement of Numerical Techniques 

Under the present contract ,  the use of i t e r a t i v e  methods t o  solve large 

matrices has been explored. 

t i v e  methods be incorporated i n  some of the programs that have been developed. 

Further development of i t e r a t i v e  fechniques i s  needed t o  introduce non- 

uniform spacing and t o  explore the "al ternat ing direction" i t e r a t i v e  methods. 

Also f u r t h e r  improvement i s  needeci on the numerical technique used t o  obtain 

eigenvalues of the determinants resu l t ing  from the f ini te-difference approxima- 

t i o n  of the buckling equations f o r  ran-uniform stress d is t r ibu t ion .  

It i 3  suggested that the most favorable i t e r a -  

2 .  

U s e  the  programs developed f o r  bending analysis  i n  conjunction wi th  LMSC in- 

house d i g i t a l  programs t o  determine s t resses  and deformations a t  specif ic  

loca t ions  i n  the model and correlate  these r e su l t s  with t e s t  data.  Th i s  work 

w i l l  include the determination of s t ress  d i s t r ibu t ions  a t  the juncture of 

manholes and other  i r r e g u l a r i t i e s  i n  both isotropic  and orthotropic elements. 

Correlation of Test Results for the 200-In. Model w i t h  Analytic Solutions 

3. 

U t i l i z e  the bending and buckling programs developed under the present contract  

t o  optimize a spec i f ic  complete mult icel lular  s t ructure  assigned by NASA/FISFC. 

The optimum i s  here defined a s  the l i g h t e s t  weight s t ructure  wherein two or 
more buckling modes a r e  c r i t i c a l  under the applied loading, and i n  which the 

membrane a s  well a s  bending s t resses  do not exceed s ta ted maxima. 

Optimization of a Specific Prototype Mult icel lular  Shel l  Structure 

If the s i ze  
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I 
of the specif ied s t ructure  i s  appreciable, the e f f e c t  of dead weight of the 

s t ructure  should be taken i n t o  account. This implies t h a t  s l i g h t  modific2- 

t i on  of the programs developed f o r  the fixed-edge cy l indr ica l  and spherical  

panels i s  required. Two comparisons appear t o  be of i n t e r e s t :  f irst ,  t o  

determine the optimum type of s t i f fen ing  and shell diameter/volume; second, 

t o  compare two o r  more spec i f ic  types of s t i f f en ing  given a shell  with a 

f ixed number of c e l l s .  

1 

4. 

A s  a r e s u l t  of previous investigation, it was noted that  b i -ax ia l  res idual  

s t r e s ses  e x i s t  i n  the welded s t ructure  i f  it i s  not heat t r ea t ed  a f te r  welding. 

In order t o  incorporate these stresses i n  the  numerical analysis,  experimental 

determination of t h e i r  magnitude and d i s t r ibu t ion  i s  necessary. 

stresses a re  known, j o in t  eff ic iency f o r  both uni-axial  and b i -ax ia l  s t a t e s  

of stress can be evaluated, using a n  appropriate yield c r i t e r i o n  f o r  the  b i -  

a x i a l  case. Results so obtained can be correlated by those obtained experi- 

mentally. 

Evaluation of Residual Stresses  and Jo in t  Efficiency 

If these 

5.  

In order  t o  achieve overa l l  s t ruc tura l  i n t e g r i t y  of the vehicle,  knowledge of 

s t a t i c  response i s  not suf f ic ien t .  In  addition, capabi l i ty  t o  obtain the 

dynamic response of the she l l  s t ructure  during operational conditions i s  

required. To achieve t h i s  capabili ty,  it i s  suggested that model character- 

i s t i c s  of the  s h e l l  elements f o r  appropriate boundary conditions be determined 

and t h a t  a d i g i t a l  program f o r  the prediction of dynamic response of the bulk- 

head under a simplified forcing function representing the launching and in- f l igh t  

environment be developed. 

Determination of Model Characterist ics and Dynamic Response of Bulkheads 
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